PPZG - IFPEN : Orientation Method for onshore 3-Component VSP's recorded with a Relative Bearing sensor in partially low deviated holes.

fifEnergies nouvelles

PPZG : Pars Petro Zagros Geophysics Engineering \& Services Co. Kazem Kazemi , Head of Geophysics
IFP- Energies Nouvelles. Applied Mathematics and Mecatronics.
kkazemi@parspetro.com
charles.naville@ifpen.fr

Abstract

Summary: A hybrid technique is proposed for orienting RELIABLY the 3 component seismic signals of rig-source VSP's, in two steps: a) integrating affordable orientation hardware device(s) into the VSP tools, such as cost effective fluxgate magnetometers and inclinometers combined with the VSP tool or VSP toolstring, without altering the vector fidelity characteristics of the VSP tool response and field data. b) a pre-processing seismic technique to render the X-Y component signals coherent versus depth in respect with rotation around the VSP tool axis/ borehole axis, to be applied in low deviated sections of the borehole where the orientation readings become useless or irrelevant. The orientation step is mandatory prior to full 3 component VSP processing, yielding additional and more reliable structural information in the borehole vicinity for the geologist; and/or information about the azimuth of eventual flow noise at the depths of permeable formations.

ORIENTING the 3-component signals from a modern multilevel VSP tool.

The sketch below illustrates the FIX geophone setting of 3 C trihedrons within most of the present day multilevel VSP tool. At the time of VSP acquisition, the deep reservoir interval generally includes a cased hole section (1a), and an open hole
section (1b and 2); the borehole may be sufficiently deviated (section 2) for the section (1b and 2); the borehole may be sufficiently deviated (section 2) for the
inclinometers to yield valid Relative Bearing angle (RB) measurements from gravity inclinometers to yield valid Relative Bearing angle (RB) measurements from gravity
detection. The cased hole section (1a) might be locally deviated beyond the inclination threshold of the inclinometers... The problem to solve is to orient the trihedron 3C signals from field recorded positions (A) into geographical position (B), prior to processing. One assumes the vector fidelity of the $3 C$ tool response. The depth interval of application of the different orientation devices is indicated: fluxgate in near vertical open hole to indicate the magnetic North direction (1b), and inclinometers to indicate the Relative Bearing angle (RB), from gravity, in open Cosed
The borehole inclination (DEV) and Azimuth (HAZI) angles are known over the entire well as they are derived from the borehole survey commonly executed during th A high precision Relative Bearing sensor or inclinometer is assumed to be mounted on at least ONE of the VSP tool shuttles, or on all shuttles; additionally, a magnetic sensor is assumed to be mounted on at least ONE of the VSP tool shuttles. By
design, a magnetometer cannot detect the earth magnetic field inside steel casing, design, a magnetometer cannot detect the earth magnetic field inside steel casing,
and inclinometers cannot measure the Relative Bearing angle (RB) from gravity for and inclinometers cannot measure the R
small inclination positions from vertical.

Problem to solve:
One observe that the first rotation, by angle RB around tool axis, exhibits the largest jitter variations level to level, since the VSP tool(s) can rotate easily around the well axis, since the cable connecting the tool shuttles can easily twist. In contrast, the two following rotations, by hole inclination DEV and hole azimuth HAZI angles
depend on the Hole trajectory, which is spatially smooth and show slow angular depend on the Hole trajectory, which is spatially smooth and show slow angular
variations versus measured depth (MD). variations versus measured depth (MD).
Actually, the technological limitations of
Actually, the technological limitations of the orientation devices considered are that
the most accurate inclinometers cannot yield correct RB angles for very small hole the most accurate inclinometers cannot yield correct RB angles for very small hole
inclinations (below 1.50), and that all the VSP tool shuttles cannot be economically equipped with a magnetometer and a highly accurate inclinometers.
A pre-processing seismic signal solution is proposed to overcome the above hardware limitation: it consists in orienting adjacent 3C VSP signals into a common system, then calibrating the computed RB rotation on the single VSP tool shuttle usually combined with a high precision inclinometer.
an open hole vertical hole section, the tool azimuth (instead of RB) is measured by a magnetometer (instead of inclino
mounted on one of the VSP tool shuttles.

Preprocessing Method for orienting 3C VSP signals on adjacent depth levels.

Physics suggests that the particle motion of major seismic body waves keep a similar shape over many adjacent VSP levels, even in presence of weak anisotropy. Thus the
field particle motion of a single body wave differs mainly by a rotation on adjacent VSP field particle motion of a single body wave differs mainly by a rotation on adjacent VSP
levels, and a high coherence of signal shape versus depth is sought for after orientation. As we are looking at orienting mainly the components X, Y of the $3 C$ signals, orthogonal
to the tool axis Z, the following reasoning has been applied to the downgoing Shear to the tool axis Z, the following reasoning has been applied to the downgoing Shear wave train, or any P or P-S downgoing arrivals, showing domina
components X, Y of rig source VSP's in vertical to deviated boreholes.

Orientation process of adjacent VSP levels
 A modulus signal trace $M(t)$, INVARIANT from rotation, is computed from the two component signals $X(t)$ and $Y(t)$. On $M(t)$, it is easy to time pick the maximal amplitude peak (arrow direction above) after application of a bandpass filter or a noise rejector
improving the coherency versus depth (example below). The peak time is then used to improving the coherency versus depth (example below). The peak time is then used to
define a narrow time window for polarization maximization from components $\mathrm{X}(\mathrm{t})$ and
$Y(t)$ $\mathrm{Y}(\mathrm{t})$, compute the RB angle, and rotate the data accordingly: this procedure is similar to
the one commonly applied on direct P arrival for offset VSP data orientation. The computed RB values are then calibrated by the reliable RB measurements
deviated sections before applying the two remaining rotations (DEV and HAZI). Modulus and three components before orientation of the low deviated section

Modulus and three components after orientation of the low deviated section

Peculiar observation on the invariant modulus signal $M(t)$.

Conclusion, discussion and suggestions The method for orienting the 3 C signals of adjacent VSP levels demonstrated
in the present example is quite robust, as long as the vector fidelity of the in the present example is quite robust, as long as the vector fidelity of the with rotation is aimed to enhance the signal coherency level to level characterizing the oriented 3C VSP data, by correcting the field RB rotation jitter. A modest extra orientation effort at the pre-processing stage is necessary, but the procedure can be accelerated. A progressive azimuthal orientation drift ($+/-15^{\circ}$) may appear in large near vertical hole intervals in absence of regularly distributed RB calibration depth levels. The exposed method does not call for cumbersome stiff bridles, or a gyroscope, and it applies for orienting most of rig-source VSP's. The RB sensor readings of the present VSP are meaningless where the hole inclination angle DEV is smaller than 8°. Combining a high precision inclinometer on ONE of the VSP tool shuttles would definitely improve the RB
accuracy of pre-processing orientation procedures. accuracy of pre-processing orientation procedures
Therefore the authors encourage the VSP tool manufacturers to combine inclinometers and magnetometers with their VSP toolstrings, and to label
trace headers of the output SEG-Y VSP data with the orientation angles. In places where oriented rig-source VSP acquisition is desired, such as foothills, deep offshore environment, or in presence of complex overburden, operational geoophysicists may ask their VSP service contractor for oriented VSP tools with advanced notice, to make sure that appropriate orientation devices are combined with the VSP tool or VSP tool string.
Aknowledgements: The authors are grateful for the support
of NIOC and CGG in the form of a Ph-D thesis (link in references).

Oriented 3C-VSP Potential:

Dip/AZimuth of seismic refilectors in reservoir
interval, around and below the borehole. Fault dectection in borehole vicinity. Improved structural geological understanding. Reflected P-P \& P-S imaging updip from borehole

References:

AAPG2001-Naville (Google), Abstract EAGE2002: PO18, Abstracts EAGE2017: Th A3-11; posters Tu P7-12, We P9 05 KAZEMI thesis, online (google link: Cergy univ, kazemi), or https://hal.inria.fr/file/index/docid/414628/filename/Thesis kazemi.pdf EAGE 2015, $3^{\text {rd }}$ WS Borehole geophysics: BGP06, \& on-line poster: http://www.ifpenergiesnouvelles.fr/Competences/Directions-de-

