Future constraints on pollutant emissions pushed car manufacturers towards Direct-Injection Spark-Ignition (DI-SI) technologies to improve engine performances and reduce both fuel consumption and emissions. New challenges are then introduced in terms of combustion optimization, due to a more complex phenomenology and a larger number of degrees of freedom, while system models require developments to approach such new engine architectures with the sufficient level of detail.

A combustion model that works toward a more comprehensive approach
In order to achieve the latter objective, a PhD work performed at IFPEN[1] hosted the development and validation of a Zero-Dimensional (0D) model of DI-SI combustion for system simulation. The proposed model focuses on physics of atomization and drop evaporation, fuel/air mixing, flame propagation in heterogeneous charge and mutual interaction between these phenomena, Figure 1.

![Synoptic diagram of the modelling approach](image)

Figure 1: Synoptic diagram of the modelling approach

In particular, it is characterized by the following aspects:

- The liquid phase is discretized in parcels grouping drops of the same size. An empirical atomization model based on injection velocity, fuel characteristics and thermodynamic conditions provides initial diameters. A Lagrangian model including drag-inertia dynamics, heat-up and forced convection describes drop parcel penetration and evaporation.

- Fuel / air mixing is described using a discrete Probability Density Function (PDF) approach, based on constant-mixture-fraction classes interacting with each other and with the drop parcels [2].

- Flame propagation takes into account mixture heterogeneity effects on flame speed and pollutant production is modeled.

A validation method based on experimental results and simulation tests

The approach was validated against experimental results, when available, and 3D CFD* RANS** simulations[3], Figure 2 and Figure 3.
Figure 2: Comparison of the gaseous (left) and liquid (right) penetrations 0D model results to experiments (Schlieren for gaseous penetration and Mie Scattering for liquid penetration) and 3D CFD results, in a constant volume vessel (operating conditions are $P=1.54\text{bar}$ and $T=388\text{K}$; fuel is iso-octane).

Figure 3: Comparison of fuel mixture fraction distribution 0D-model results to 3D CFD results, in a DI-SI engine at different crank angles instants: a, 270 CAD*** BTDC****; b,
180 CAD BTDC; c, 90 CAD BTDC; d, 0 CAD BTDC. Operating conditions of the engine are 6bar of IMEP and 1200rpm of rotational speed; injection starts at 278.6 CAD BTDC.

* CFD = Computational Fluid Dynamics
** RANS = Reynolds-Averaged Navier–Stokes
*** 270 CAD = Crank Angle Degree
**** BTDC = Before Top Dead Center

The implemented model already opens up multiple perspectives

The model was implemented in the Simcenter Amesim platform for multi-physical modelling of the Siemens Digital Industries Software and integrated in the CFM Spark Ignition combustion chamber submodel of the IFP-Engine library.

This PhD work opens various perspectives for future works:

- The discrete PDF, only applied so far to the fresh mixture, could be employed to describe the mixing-controlled post-oxidation reactions in the exhaust gas, thus improving the gaseous pollutant emissions prediction capability of the model;

- The parcel-based liquid phase model could be used to predict the mass of liquid fuel colliding with the cylinder walls, information that can be used to develop a liquid film model;

- Predicting mass and drops size of liquid fuel present in the cylinder during combustion is also highly relevant in the context of soot formation modelling.

Scientific Contact: Alessio Dulbecco

Publications

>> DOI: 10.4271/2015-24-2471
