The Swumble™ concept for high-efficiency SI engine

Next generation of fully lambda 1 Miller-Atkinson engines

- New intake port design for high TKE production
- Plug and play solution, ready to replace current tumble architectures
- Compatible with increasing compression ratios, higher than 13:1
- Achieving high efficiency, even for low-displacement engines

Reduction of the real-world fuel consumption

43% peak brake efficiency together with 92 kWe/L power output, and a large > 40% brake efficiency area with:

- CR 13:1 – Miller cycle 140°CA lift duration
- Use of IGR and EGR
- Use of VGT

Reduction of the emitted particulate mass and number

Very low particulate level due to the improved interaction between air motion and injection

- Higher flexibility for injection phasing optimization
- Improvement of mixture homogenization
Greater capacity for dilution
Optimum turbulence production improves dilution capacity and Miller capability, thus enabling further fuel efficiency gains.

Native and highly turbulent aerodynamics
Real breakthrough in the area of gasoline engines, with significant gains compared to the tumble motion:
- Higher turbulent production with same in-cylinder flow velocity
- Better trade-off between turbulence and flow capacity
The larger the Miller ratio, the higher the benefits of the Swumble™ concept.

One concept, compatible with multiple engine families
IFPEN is currently developing the Swumble™ concept for both, two and four valves per cylinder architectures. Those different approaches permit to achieve high specific power output together with maximized efficiency:
- Increase specific power above 90 kW/l
- Improve efficiency beyond 43%