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Modern seismic recording instruments allow precise measurements of the amplitude 
of reflected signals. Intuitively we would expect that this amplitude information could be 
used to increase our knowledge of the physical properties of the reflecting earth. 

The relevant factors defining the amplitude of a reflection signal are: spherical diver- 
gence, absorption, the reflection coefficient of the reflecting interface, the cumulative 
transmission loss at all interfaces above this, and the effect of multiple reflections. 

Of these factors, three-spherical divergence, the reflection coefficient and the trans- 
mission loss-are reasonably clear concepts (though the estimation of transmission loss 
from acoustic logs caused some difficulties in the hey-day of synthetic seismograms). 
Absorption still presents considerable problems of detail, but our understanding has 
increased significantly in recent years. 

The factor least well understood is undoubtedly the effect of multiple reflections. 
Multiple paths having an even number of bounces can have the effect of delaying, shaping 
and magnifying the pulse transmitted through a layered sequence. Simple demonstations 
of this phenomenon can be made using elementary thin plates, and these can be presented 
for various synthetic and real sequences of layers. Such demonstrations lead one to explore 
the relation between the spectrum of the transmitted pulse and the spectrum of the 
reflection coefficient series. 

If it were possible to isolate the amplitude and shape variations imposed by absorption 
within a layer, there would be a chance that this measure of absorption would be useful as 
a correlatable or diagnostic indication of rock properties. If it were possible to isolate the 
amplitude and shape variations imposed by multiple reflections, there would be a chance 
that this measure would be useful as an indication of cyclic sedimentation and of the 
dominant durations of the sedimentary cycles. However, the separation of these two 
effects constitutes a formidable challenge. The very difficulty of this separation suggests 
that it may be opportune to review the quantitative estimates of absorption made by 
field experiments. 

INTRODUCTION 

Why is it that in some areas we need IOO kg of explosive, while in others we 
need little more than a cap? 

* Presented at the 3znd meeting of the European Association of Exploration Geophys- 
icists, Edinburgh, May 1970. 

* * Seiscom Limited, Sevenoaks, Kent, England. 
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Part of the answer lies, of course, in the noise background. But there must 
be more to it than that ; in the early part of the record, long before the amplitude 
of the reflection signal dies away to the noise level, we observe one amplitude 
decay rate in one area and a grossly different one in another. Why? 

And why is it that no routine quantitative use is made of seismic amplitudes ? 
Surely the amplitudes must be related to the geology in some meaningful way ? 

Indeed, was not this one of the principal considerations which led us to 
adopt binary-gain recording with such enthusiasm ? What happened ? 

We cannot answer these questions fully. Nevertheless it seems opportune to 
study seismic amplitudes in some detail, and to take note of any features of the 
amplitude decay which might possibly be indicative of the geology. 

We start with a review of the factors which determine the amplitude varia- 
tions of the seismic reflection signal. 

FACTORS AFFECTING REFLECTION AMPLITUDES 

In this study we are concerned primarily with the variations in reflection 
amplitudes imposed by the subsurface geology. Thus we exclude amplitude 
considerations which merely define the scale-such factors as instrument 
sensitivity, source energy, and the geophone-ground coupling-and we assume 
a broad-band instrumental response. This allows us to define five major factors 
affecting the variations of amplitude: spherical divergence, interface reflection 
coefficients, absorption, interface transmission losses, and multiple reflection 
effects. These we discuss in turn. 

I. Sfiherical divergence 

The familiar law of conservation of energy, when applied to a spherical 
wavefront emanating from a point source in a uniform lossless material, tells 
us that the intensity diminishes as’the inverse square of the radius of the 
wavefront (figure ra). Translated into the type of measurements made in 
seismic work, this says that the pressure amplitude of the seismic wave is 
inversely proportional to the distance travelled. As always, we are grateful 
when nature produces a simple relationship. 

But nature is just mocking us. The earth is not uniform, and in the presence 
of an increase of seismic velocity with depth the wavefronts are generally not 
spherical. Therefore the amplitude decay is subject to an additional effect 
associated with refraction (figure ~b). 

For a representative case, the decay of amplitude due to spherical divergence 
is illustrated in figure 2. The overall decay of 50 dB is referred to a very early 
reflection at 0.1 s, and thus is appropriate only‘to a geophone close to the 
source; more distant geophones would record much less decay. In both cases 
we may well find that spherical divergence accounts for the majority of the 
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Fig. I. The inevitable decay in amplitude associated with geometrical divergence (a) in a 
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Fig. 2. The magnitude of the geometrical decay, in a typical case. The o dB level re- 
presents the amplitude of a supposed “first” reflection at 0.1s. 
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total decay observed on our records; we shall see later what are the circum- 
stances under which this is so. 

Spherical divergence in itself conveys no geological information, and so we 
hasten to compensate it. In the past, this has often been done by multiplying 
each sample by a factor proportional to the depth (or even the raw time) to 
which it corresponds; in the following material, however, we are assuming that 
the compensation also takes full account of refraction. 

Even so, the compensation cannot be all we would wish. For example: 

-In the usual case when primary reflections and long-period multiples may 
arrive simultaneously, but with different effective velocities, it is not pos- 
sible to provide exact compensation for both. Proper compensation for the 
primaries ordinarily leaves the multiples too large. 

-Similarly, compensation on the basis of horizontal layering ordinarily yields 
an excess of amplitude for reflectors showing strong dip. 

-The law assumes a point source. Much seismic work nowadays is done with 
a source array; such arrays appear as a point source at low frequencies, but 
may be appreciably directional (showing a less-than-spherical loss) at higher 
frequencies. Properly, therefore, divergence compensation for such sources 
should include a frequency-dependent term. 

The complications represented by these three items should not worry us too 
much. Basically, spherical divergence is an effect which is highly predictable 
and simply understood. 

2. Interface reflection coefficients 

As we know, a seismic reflection is generated at every geological interface 
across which there is a contrast of acoustic impedance. For present purposes, 
the acoustic impedance is represented by the product of density and velocity, 
or pv. Then at normal incidence (and we must note this limitation) the pressure- 
amplitude reflection coefficient is given by the difference of the pI’ values 
divided by the sum of the ~IJ’ values. 

The reflection coefficient, we remember, is not a measure of the physical or 
geological properties of a layer, but only of the contrast of properties between 
two layers. 

Within most sedimentary sequences, a reflection coefficient of f 0.2 would 
be regarded as large. Values higher than this are observed, but (except near the 
surface) these values are unusual. Values of f 0.1 are found in abundance, and 
lower values in profusion. 

For seismic purposes, the geologic column is represented by a reflection 
coejjiciertt series (or reflection coefficient log), identifying and quantifying the 
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interface contrasts (figure 3). This is, of course, the conceptual germ of the 
synthetic seismogram. 

If it were possible to isolate from the seismic reflection record the reflection 
coefficient series (with all the magnitudes, correct), and if by an independent 
measurement we could establish the product of density and velocity in the 
first two layers, then in principle the acoustic impedance in every other layer 
could be computed. If interval velocities are known by other means, then layer 
densities could be deduced. 

Reflection coefficient R,, = Px-PIU 

(pressure amplitude,normal incidence) &+PIv, 

Geological layers p V Values Reflection coefficient series 

-- -- 
----- 

----_ 

-- -- 

Fig. 3. The physical reality of a layer sequence (left) may be depicted in terms,of its p V 
log (centre) or its corresponding reflection coefficient series (right). 

Therefore one of the long-term objectives of the seismic method must be the 
determination of the reflection coefficient series with all its magnitudes correct. 
The determination of the detailed sha$e of the reflection coefficient series is, 
of course, the objective of a spiking deconvolution process; now we ask also 
that all the reflection coefficient magnitud’es should be correct. We can see 
immediately that we are unlikely to be successful (since, for one thing, our 
objective would require the complete removal of multiple reflections), and we 
can see also that use of it to obtain densities issubject to cumulative errors, 
However, it remains an objective. 

3. Absorption 

We have seen that spherical divergence, while it acts to diminish seism.ic 

amplitudes at distance, does not involve any loss of seismic energy-merely a 
spreading of it over a greater area of wavefront. Again, the processes of reflec- 
tion and transmission at interfaces do not involve any loss of energy-merely a 
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redistribution of it in the forward and backward directions. Absorption, 
however, is different; it diminishes seismic amplitudes, as a function of the 
distance travelled, by an irreversible conversion into heat. 

This loss is known to be frequency-selective. A seismic pulse, representing a 
spectrum of frequencies, loses amplitude by a progressively greater absorption 
of its higher frequencies. In this sense, we note, the decay of “amplitude in- 
troduced by absorption cannot properly be divorced from the change of 
spectrum. 

Nowadays we accept that absorption in dry earth materials is related to a 
power of frequency very close to the first. This can be made eminently reason- 
able if we consider the seismic wave emanating from a sinusoidal source into a. 
large homogeneous expanse of rock material. If we “freeze” the pattern of 
particle displacements at a certain instant, we see a succession of alternate 
compressions and rarefactions. The distance between successive compressions is 
a wavelength, at the frequency of the source and the velocity of the material. 
Then, because of absorption, we see a decay in the pressure amplitude from one 
compression to the next. So if we accept an absorption coefficient proportional 
to the first power of frequency, we accept, substantially, that this decay in 
acoustic pressure over each wavelength is a constant (which we might expect to 
be characteristic of the rock in its given environment). The proportional loss, 
over one wavelength, is substantially independent of frequency; it is therefore 
usually expressed in decibels per wavelength. 

In deference to the theoretical workers, we should pause a moment to note 
that this simplified view ignores certain mathematical difficulties; nevertheless 
it seems to be sufficiently close to reality to warrant our using it for the present. 

Let us illustrate the implications for a rock material having an absorption 
characteristic of 0.2 dB/wavelength and a velocity of 3 ooo m/s, and let us 
consider a path length of 300 m in this material. At a frequency of IOO Hz this 
distance represents ten wavelengths. We expect each of the ten compressions 
to be 0.2 dB less in amplitude than the one before; thus the amplitude of the 
second compression is about 98% of that of the first, the third 98% of the 
second, and so on. At any other frequency the decay is likewise exponential. So, 
over the 300 m distance (corresponding to ten wavelengths at IOO Hz, or to one 
at IO Hz) the loss is 0.2 dB at IO Hz, I dB at 50 Hz, and adB at IOO Hz. Thus 
it is a simple matter to draw the effect of absorption on the spectrum of the 
propagating pulse; this is done in figure 4. 

So we accept that decay of any sinusoidal component is exponential (in any 
one material), but what can we say about the amplitude of the composite pulse ? 
Alas, very little; it all depends on the characteristics of the pulse. which con- 
stituted the “input” to the absorbing earth-on the characteristics of the 
seismic source. 
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Under such circumstances our usual approach is to see what would happen 
to a pure spike input, and to reason onwards from that. So, adopting a spike 
input, we find that there are immediately two approaches we must consider. 
The first is appropriate to any circumstances in which we can fairly accept that 
we observe a single pulse in isolation (so that we can actually measure the 
amplitude of a selected peak of the pulse) ; the second applies when we see only 
a complex of overlapping pulses. 

Frequency, Hz 

dB 

-60 - 
after 543 2 I 

seconds 

Fig. 4. The progressive high-frequency loss with increasing travel-time, illustrated for a 
uniform absorption of 0.2 dB/wavelength. 

For a single pulse in isolation, two features affect the peak amplitude of the 
pulse: the peak amplitude decays as the higher frequencies are absorbed, and 
the peak amplitude decays as the pulse is lengthened by dispersion. The second 
effect occurs because the velocity of propagation of the sinusoidal components 
is slightly dependent on frequency, so that components which are in phase at the 
peak of the pulse early in its history are no longer exactly in phase at later 
times. To quantify the effect of dispersion on the peak amplitude of the pulse 
we must make some assumption about its magnitude ; the assumption which 
is both convenient and physically reasonable is the minimum-phase assump- 
tion. (For a rudimentary account of minimum-phase behaviour, dispersion, 
absorption and other matters related to the present discussion, see section 
2.3.12 and chapter 3.1 of volume I of Evenden, Stone and Anstey, 1970. For 
a more advanced account, including some practical evidence, see O’Brien, 
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1969). On this basis, we can display the pulses which correspond to the am- 
plitude spectra of figure 4, and see the effect of absorption on their peak 
amplitudes ; this is done in figure 5. 

As we can see, the decay is very rapid at early times; the flat spectrum of the 
spike means that a considerable proportion of the spike energy is carried at the 
high frequencies, and this is quickly lost. 

Input 

Effect on a spike pulse of 

an absorption of O.ildB/h 

20ms 

I After 1s 

’ After 2s 
After 3s 

Fig. 5. The absorptive effect of fig. 4 translated into the time domain, on the assumption 
of minimum phase. 

So we must accept the relevance of the source characteristics-if the source 
does not emit high frequencies, this rapid collapse of amplitude does not occur. 
Thus when we said earlier that in some practical cases spherical divergence 
accounts for the majority of the observed decay, we can guess that this indicates 
a low-frequency narrow-band source. There is nothing we can say about the 
decay of peak amplitude with time, until we know the characteristics of the 
source pulse (Gurvich and Yanovskii, 1968). 

When we are not concerned with a specific pulse observed in isolation, but 
with a complex of overlapping pulses, one aspect of the problem changes. 
Manifestly, the broadening of the pulse by absorption and dispersion must 
increase the chances of overlap; manifestly, also, the resultant amplitudes may 
be increased or decreased by the overlap, according to the reflector signs, the 
reflector spacing and the pulse shape. To obtain a useful generalization we must 
go all the way to a reflection coefficient series having close but random re- 
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flector spacing (so that all reflected pulses overlap several or many times), and 
then look at average conditions within a window. Under these circumstances, 
clearly, dispersion loses its significance ; it yields a broadening which is addition- 
al to that produced by absorption, but which, unlike the latter, does not involve 
a loss of energy. Looking at a window containing a random superimposition of 
pulses, we see dispersion merely as a phase effect which modifies the shape of 
the composite waveform without changing the energy evident in the window. 

We have said that a knowledge of the source characteristics is necessary 
before we can calculate the amplitude decay due to absorption. The source 
characteristics, of course, are certain to be different from one source to another, 
and may also be different from one shot to another. Although this is really all 
that can be safely said, one would feel guilty about abdicating the discussion on 
such an unsatisfactory note. So let us consider at least one specimen case; 

Frequency IO 
0 

d0 

Idealized basic sa;lrce response 

Fig. 6. The full line indicates a tractable basic form for the spectrum of the pulse gener- 
ated by a small explosive charge in a competent material; normally a resonant peak 

(such as that shown dashed) is superimposed on this basic form. 

for example, let us consider some reasonable form of source spectrum such as 
that illustrated by the heavy line in figure 6. Then we can show that this basic 
curve dictates an average amplitude decay, in the presence of absorption, 
which follows slightly less than a - 3/z power of travel time. 

In practice most sources exhibit a response more peaked than this (such as 
the one shown dashed in figure 6) ; obviously the effect of the peaked response 
superimposed on the basic curve is to modify the decay, to a greater or less 
extent. 

JVe can summarize our preparatory discussion of absorption thus: 
-It is reasonable to accept, at the present stage of our knowledge, that 

absorption varies very nearly with the first power of frequency. 
-This means that the loss in decibels over a fixed distance in a single medium is 

proportional to frequency, or that at a single frequency the loss in decibels is 
proportional to travel time. 
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-The effect of this loss on the amplitude of the propagating pulse cannot be 
established until the source characteristics are known. 

-As a generalization of the last item, the decay appearing as a result of any 
frequency-selective effect which is progressive with travel-time must 
depend also on the constant frequency-selective effects (source, detectors, 
instruments, filtering) along the path of the signal. 

---It is probably reasonable to expect that the absorption mechanism exhibits 
minimum-phase behaviour. 

--The decay of amplitude of a single pulse observed in isolation is slightly 
greater than that of the average amplitude of a profusion of overlapping 
pulses. 

-Only by chance could the pulse amplitude decay conform strictly to the 
popular exponential. (We note in passing that this does not exclude the use 
of exponential compensations for particular purposes. Before derever- 
beration, for example, we may be forced to use them; after dereverberation 
we may remove their effect and then apply a better correction if we know 
one.) 

4. Interface transn?,ission losses 

Again invoking conservation of energy, we know that energy reflected from 
an interface is not available to be transmitted through it. Clearly, the larger 
the reflection coefficient, the greater is the transmission loss. We shall need to 
employ this again later, so let us take particular note of it : More up, less down. 

The relationships between the reflection and transmission coefficients are 
depicted in figure 7. Clearly the transmission loss is unaffected by the sign of 
the reflection coefficient. Setting aside spherical divergence and absorption 
for the moment, we can see that the amplitude of a seismic reflection is the 
product of its own reflection coefficient with the product of all the two-way 
transmission coefficients of the interfaces above it. 

PI I V 

-4#- 
4Plv, PA - Two-way Transmission Coefficient = - 2 (p*“2*PI”J 

P2 2 V (pressure amplitude,normal incidence) 

= I-R:, 

Amplitude of reflectionfrom third interface = R,, (I - Rz)( I -Ri3) 

Fig. 7. The relationship between the transmission and reflection coefficients. 
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Are transmission losses a major effect, or a minor one ? Intuition is not a very 
good guide on this question, and it helps to have before us some illustrative 
values. Figure 8 gives the two-way transmission loss as a function of the num- 
ber of interfaces for reflection coefficients of f 0.05, f 0.1 and f 0.2. 

Our first conclusion is that the transmission loss associated with a single 
reflector-even a strong one-is virtually insignificant. We would expect a 
handsome reflection from a reflection coefficient of 0.2, and we might feel that 
there would be a major diminution of reflections below it; we see, however, that 
such reflections are diminished by only 0.4 dB, or 4%. The corresponding 
diminution introduced by a reflection coefficient of 0.05 is 0.02 dB (0.2%) which 

I 
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dB 
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I 
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60A 0.1% 

Fig. 8. The two-way transmission loss through a number of interfaces, for a range of 
reflection coefficients. 

is in itself negligible. So if we think of the crust of the earth in terms of a few 
major layers (representing the coarsest division into geological epochs), we are 
led to expect quite small transmission losses. 
, The second conclusion, however, is that the cascaded transmission loss 
through a great number of interfaces is certainly not negligible. In particular, a 
large number of individually insignificant interfaces can have at least as great 
an effect as a few major ones. And, since we know from our first glance at al- 
most any outcrop that the earth’s stratification can be very fine, we realize that 
we have to start thinking rather carefully about geology before we can assess 
the true significance of transmission losses. 

In particular, we find we have to make an immediate distinction between 
two extreme types of stratification, and the sedimentary processes which give 
rise to them. We illustrate these in figure g, using artificial acoustic logs. Both 
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logs show the same systematic increase of acoustic impedance with depth; 
however, the upper one implies a profusion of thin layers tending to alternate in 
their pV values, while the lower one implies slow and progressive variations of 
pV value. As geophysicists we would describe the upper log as high-frequency, 
the lower one as low-frequency. The more fundamental description, however, 
must be the geological one : we think of the upper log as representing thin layers 
laid down by a cyclic pattern of sedimentation which systematically tended to 
interleave high-velocity and low-velocity materials, while we think of the 
lower log as representing a transitional patter% of sedimentation which systema- 
tically tended to make steady gradations of velocity within basically thick 
layers. 

Eig. g. Artificial acoustic logs prepared to illustrate the geophysical significance of cyclic 
layering (upper) and transitional layering (lower). 

We shall use the terms cyclic and transitional to describe these two types of 
layering; in doing so, how,ever, we note that our present concern is with the 
acoustical properties of the layering, and that cyclic sedimentation in this sense 
need not correspond exactly with cyclic sedimentation in the geological sense. 

The relevance of the distinction between cyclic and transitional layering, in 
the present context, is brought home to us when we compare the transmission 
loss for the two cases of figure 9; for the lower log it is quite insignificant, 
while for the upper log it is more than a thousand times as great, and certainly 
significant. 

This happens, of course, because the reflection coefficients in the lower case 
are smaller, so that the transmission loss is also smaller. But, within the con- 
straints on velocity and density known to exist in the real earth, this is inevit- 
able for a transitional log; large reflection coefficients and large transmission 
losses can be maintained only if the large reflection coefficients tend to alter- 
nate in sign. 

Thus we see several clear situations. We see the situation of a massive layer 
which contains no significant reflectors and therefore contributes no significant 
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transmission loss. We see the situation of a single interface having a large 
reflection coefficient and a minor transmission loss. We see the situation where 
this interface is transitional instead of abrupt; in this case the progressive 
transition makes the transmission loss even less significant-just as an acoustic 
horn matches between low and high impedance, and so reduces the loss. And 
we see the situation where thin layers tend to alternate between high and low 
pl/ values, and so provide (if there are many of them) the possibility of large 
transmission losses. 

So, .in hopes that we may be led to a technique for distinguishing between 
transitional and cyclic geology, we ask: How can we assess the magnitude of 
transmission losses in the real earth ? 

This proves an unexpectedly knotty problem. It is indisputable that, over a 
given up-and-down path in the earth, there must be a definite and altogether 
real transmission loss. But the obvious way to obtain a measure of it-from a 
velocity log-proves to be full of difficulties. 

First, we observe that a velocity log taken with a I m receiver spacing is 
much more active than one taken with a 2 m spacing. This reminds us that a 
velocity log does not identify (except in a blurred sense) layers having a 
thickness significantly less than the receiver spacing; the transmission loss 
computed from a cyclic log at I m spacing is greater than that obtained with a 
2 m spacing. How far does the effect go? Geologically, we feel that, although 
very fine layering obviously exists, reflection coefficients between very thin 
layers are likely to be small. But the potential number of very thin layers is 
enormous. 

Second, we know that not every wiggle on a velocity log represents a cor- 
responding formational change; errors associated ,with the borehole are in- 
evitable, and the difficulties, of compensating these increase as the receiver 
spacing is reduced. 

Third, if we attempt our transmission-loss evaluation digitally, we-must be 
careful to ensure a proper sampling interval, Obviously much of the early 
implementation of synthetic seismograms was in violation of this; probably this 
did not matter too much for those applications, but it is essential in any at- 
tempt to evaluate transmission losses. 

Fourth, we have to think about the nature of geological “interfaces”. Some- 
times, for sure, they are real discontinuities, properly represented by the simple 
equation; others may be very smooth gradations (caused, for example, by 
variations in porosity with progressive changes of grain size)-within which the 
transmission loss is virtually zero. 

Finally we have to ponder the acoustics of the situation. The cited equation 
for transmission loss applies to plane waves, and we usually side-step this by 
restricting ourselves to the far field, where our spherical waves are almost plane. 
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But if we are concerned with very thin layers this may not be defensible (see, 
for example, Hagedoorn, 1954). 

So we have to admit that, although the concept of a transmission loss in the 
real earth is a clear one, we are not well placed to assess the magnitude of the 
loss. 

If we do the best we can, with the logs available today, we emerge with what 
appears to be a ridiculous result. As we have said earlier, a record from a nar- 
row-band low-frequency source, properly compensated for spherical divergence, 
shows very little decay attributable to transmission loss-at most a few 
decibels per second. But values of transmission loss computed from velocity 
logs often work out at 40-50 dB/s-a figure which, if real, would mean that the 
seismic reflection method could not possibly work as it does. 

So something is wrong. Probably part of the reconciliation lies in the con- 
siderations set out above, but part-the greater part-must involve multiple, 
reflections. Just as it is physically ridiculous to think of reflection without 
multiple reflection, so it is improper to consider transmission without multiple 
reflection. 

5. Mdti$le reflection effects 

For many of us, the first intimation that multiple reflections affect the 
amplitude of “primary” reflections came with the introduction of digitally- 
generated synthetic seismograms. In those days it was customary to calculate 
at least three synthetic traces : primaries without transmission losses, primaries 
with transmission losses, and primaries with all multiples and with transmission 
losses. Just as we have seen above, the second of these-primaries with trans- 
mission losses-usually decayed away to nothing so quickly as to be useless. 
The most obvious effect of including the multiples was to increase the amplitude 
of the firimaries, sufficiently to offset most of the transmission losses. 

The explanation-that primary paths are systematically reinforced by very- 
short-delay “peg-leg” multiple paths-was given and developed by Anstey 
(1960), Trorey (1962), d’Erceville and Kunetz (1963), Bois and Hemon (1963), 
Bois, Hemon and Mareschal (1965), Delas and Tariel (1965), Mikhailova, 
Pariiskii and Saks (1966), and Berzon (196j). 

In retrospect, we can see that the explanation was always implicit in the 
classical acoustic exercise, “the case of the thin plate.” In figure boa we see 

the basic situation: the direct transmitted signal is followed after a short delay 
by a a-bounce multiple reflection whose amplitude, referred to the direct 
transmitted signal, is just the product of the upper and lower ,reflection coeffi- 
cients. The most important feature of this situation is that the sign of the 
multiple reflection is always the same as that of the direct signal; the reflection 
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coefficients are opposite in sign when viewed from above, and one of them is in 
fact viewed from below-so the product is always positive. 

Our first reaction is to see whether we are looking at a major effect or not. 
Quickly we note that if both reflection coefficients have a magnitude even as 
high as 4, the multiple reflection has an amplitude of only f of that of the direct 
signal. For more realistic magnitudes, the multiple is very small. However, 
before we discard the effect as insignificant, we should consider the case of 
Figure ION, where we postulate that, somewhere along its path, the direct signal 

I 
Incident 

Incident 

Direct I 1 
transmitted 

a 

+ 

+ 

Direct 
transmitted 

Sum of E-bounce 
multiples 

Fig. IO. (n) The basic thin plate, defined between interfaces having reflection coefficients 
of opposite sign. 

(b) The cumulative effect of the multiple reflections from four such thin plates. 

encounters four such thin plates. Then if the reflection coefficients are again +, 
we can see that the composite multiple reflection is now equal to the direct signal. 
When we include the return path through the same sequence, the composite 
multiple reflection has double the amplitude of the direct signal. 

If the reflection coefficients are of magnitude 0.1, then it takes 50 thin plates 
before the multiply-reflected signal becomes equal to the two-way direct signal, 
but the conclusion is eventually the same : the ma&ply-reflected sigrzal in a series 
of thin plates bounded by interfaces of opfiosite Polarity is always of the same sign 
as the direct transmitted signal, and tends to overtake it in.amplitude. At this stage 
we can see, in a gross sense, that in a cyclic sequence of layering-a succession of 
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thin plates-there is an inbuilt multiple-reflection mechanism which acts to 
compensate the large transmission loss that would otherwise occur. Clearly, 
we are now concerned to determine the degree’ of this compensation: will it be 
so great that we lose all hope of distinguishing between cyclic and transitional 
layering by their effect on amplitudes? 

Basically, this is a matter of geology; so, let us return for a moment to the 
geological matters broached in the last section. In particular, let us return to 
the question: Do geological consideratidns lead us to expect any connection 
between the thickness of a layer and the reflection coefficients at its bound- 
aries ? 

The thick layers, we have said, often represent geological epochs. In the 
nature of things, there can be only a few of them. The interfaces bounding them 
may well have large reflection coefficients; the chances are that both are 
positive. 

At the other end of the scale, we have guessed that the very thin layers are 
likely to be bounded by very small reflection coefficients-we can scarcely 
conceive large reflection coefficients separated by a matter of centimetres. If the 
reflection coefficients are small, we can allow the possibility of sequences of 
transitional layering, while still keeping the overall variations of acoustic 
impedance within observed limits. We as geophysicists cannot say whether 
transitional or cyclic layering is the more likely; that is a question for the 
geologists. 

Between the very thin and the very thick layers there must be some range of 
thicknesses where appreciable reflection coefficients first become possible. 
Over and beyond this range, the observed limits on acoustic impedance mean 
that sustained cyclic layer&g is more likely than. sustained transitional layering. 

So these considerations lead us to expect a middle range of layer thicknesses, 
bounded by significant reflection coefficients tending to be opposite in sign. 

If these guesses have any foundation, we are immediately at odds with one 
of the favourite assumptions in the theory of seismic processing. Often, in 
processing, we invoke the assumption that the reflection coefficient series is a 
train of spikes of random amplitude, spacing and polarity; now we are saying 
that the earth’s stratification is the result of natural laws, that these firovide some 
@edictable constraints, and consequently that the outcome is not completely random. 

Is there some simple check we can make, to resolve the issue ? Yes, there is; 
the assumption of randomness usually expresses itself as an assumption that the 
auto-correlation function of the reflection coefficient series is a simple spike (so 
that the auto-correlation function of the ideal seismic record is the auto- 
correlation function of the seismic pulse)-we can check whether this is true. 

Let us try it first on the two synthetic examples of figure g. Figure IIb is the 
auto-correlation function of the reflection coefficient series corresponding to the 
Geophysical Prospecting, Vol. XIX 29 
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cyclic log of figure ga; figure IIU is that corresponding to the transitional log of 
figure gb. Clearly lzeither is a simple spike. In particular, we note that the first 
few values of the transitional auto-correlation function are all positive, whereas 
the second value of the cyclic auto-correlation function swings strongly negative. 
We shall see the significance of this in a moment. 

Auto 
correlation 

of 
reflection 
coefficient 

series 

CYCLIC REAL 
SYNTHETIC LOG 

I’ 

0 I 2 3ms 

Fig. II. The auto-correlation functions corresponding to (left) an artificial transitional 
log, (centre) an artificial cyclic log, and (right) the real log of fig. 12. 

b 

Fig. 12. The refIection coefficient series (u) corresponding to a segment of a real acoustic 
1% @I. 

In figure IIC we see the auto-correlation function of a “real” reflection 
coefficient series. In fact, the reflection coefficient series is that shown in 
figure IZU, and the real velocity log from which it was derived is shown in 
figure nb. The derivation was made on the usual assumption that density 
variations can be neglected; any case we can demonstrate under this restriction 
is likely to remain essentially sound when the restriction is removed. The log 
represents about 1400 m of depth, and 0.343 s of one-way time. The original 
sampling, before conversion to time, was at 0.765 m of depth, chosen to be less 
than the receiver spacing of the logging tool. To the eye, the reflection coeffi- 
cient series could well be random. 
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But the auto-correlation function (figure IIC) says no. We can see the spike 
at zero lag, of course, and the values for lags beyond about zms are compatible 
with randomness, but between zero and I or 2 ms the values have a different 
message. They are telling us that, for layer thicknesses up to about IO m, the 
stratification shows systematic deviations. from randomness. 

If we recall the actual operations used in the construction of the auto- 
correl?tion function-shifting, multiplying, and adding-we can see very easily 
that the auto-correlation function of a reflection coefficient series has a direct 
physical significance. The value at the first lag represents the sum total of all 
the z-bounce multiple reflections occurring in layers of one unit of thickness. 
The value at the second lag represents the sum total of all the z-bounce multiple 
reflections occurring in layers of two units of thickness. Similarly, values at 
higher lags represent z-bounce multiples of longer periods. If the value is 
positive, it means that the sum total of all the corresponding z-bounce multiples 
is of opposite polarity to the direct transmitted signal; if it is negative, the 
multiples reinforce the direct signal. 

So the auto-correlation in figure IIC is confirming our geological guesses 
about the likely relation between the thickness of a layer and the magnitude 
and signs of the interfaces bounding it. 

It is true that the equivalence is not exact; our earlier thinking regarded a 
layer in the sense of a geological entity, whereas figure IIC regards a layer as 
defined by any pair of interfaces. Further, the physical interpretation of the 
auto-correlation function in terms of z-bounce multiples ignores the transmis- 
sion loss in all intervening interfaces. Nevertheless the auto-correlation 
function suggests two conclusions for the particular log under study: 

-Layers of very small thickness (typically about I m or less) show a weak 
tendency to be of transitional type, being bounded by interfaces of like sign. 
The small magnitude of the first lag value could be due either to a fortuitous 
offsetting of transitional and cyclic effects, or-and this seems more likely- 
it could be confirming our guess that very thin layers are likely to be bounded 
by small reflection coefficients. 

-Layers in the thickness range I-IO m tend to represent cyclic changes, being 
bounded by interfaces of opposite sign. This is a clear and positive effect, 

So the evidence, at this stage, allows us to say that the earth may contain : 
-A very large number of very thin layers, whose boundaries have small 

reflection coefficients and introduce small transmission losses; these losses 
may be increased somewhat (if the layers are transitional) by multiple 
reflection effects. 

-A smaller (but still large) number of less thin layers, whose boundaries tend 
to have appreciable reflection coefficients but to be of opposite sign; the 
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very large transmission losses to be expected in this case tend to be offset by 
multiple reflection effects. * 

-A small number of thicker or much thicker layers, whose boundaries tend to 
have large reflection coefficients; these interfaces give rise to the reflections 
we see on normal records, but their comparatively small number means that 
the transmission losses introduced by them are minor. 

1 
TRANSITIONAL SYNTHETIC 
Peak amplitude 0.999 

CYCLIC SYNTHETIC 
Peak amplitude 0.45 

REAL LOG 
Peak amplitude 0.05 

0 
0 IO ms 

Fig. 13. The transmission response (that is, the impulse response of the two-way trans- 
mission path) for (left) the artificial transitional log, (centre) the artificial cyclic log, and 

(right) the real log of fig. 12. 

Before we leave the auto-correlation function, we should note this interesting 
fact: We can manipulate the positive-lag auto-correlation function to ap- 
proximate the actual time form of the a-bounce multiple reflections by re- 
moving the zero-lag value, by reversing the sign of all other values, and by 
doubling the time scale to yield two-way multiple reflection times. 

Although this gives us an easy way of assessing whether a particular re- 
flection coefficient series will systematically reduce its transmission loss by its 
z-bounce qmltiple reflections, it leaves us wondering what is the effect of the 
4-bounce and higher-order multiples. For this, and to eliminate the approxi- 
mation involved in neglecting transmission loss within the multiple part of the 

‘path, we must go through a complete ray-tracing process to find the form of the 
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complete transmitted signal. It makes good sense to do this for two-way 
transmission; then we say that we will inject a spike pulse at the top of the 
layered sequence represented by the log, and calculate the form of a pure 
isolated reflection as it would be after two-way transmission down and back. 
We do this in figure 13~ for the synthetic cyclic log of figure ga, in figure r3b 
for the synthetic transitional log of figure gb, and in figure 13c for the real log 
of figure 12. (The techniques for this type of calculation have been given by 
several previous workers; see, for example, Baranov and Kunetz, 1960; Trorey, 
1962.) 

As we expect, the spike pulse is scarcely changed, either in amplitude or in 
form, by transmission through the transitional sequence (figure 13~). In fact 
there is a small tail added (Bortfeld, rg6o), but for a log of the limited extent 
involved here it is too small to be significant. The change of amplitude due to 
transmission loss is from 1 to 0.999. I 

The cyclic sequence, however, produces a much more marked effect (figure 
13b). The transmission loss (that is, the diminution of the first point of the 
transmitted signal) is from I to 0.44. A significant positive tail is added, 
extending to three points. The sum of the amplitude values for the first three 
points is 0.994. This, obviously, is very interesting; it is telling us that the 
decrease of amplitude caused by transmission is at least partially compensated 
by multiple reflection-at the expense of a smearing-out over time. We begin to 
sense that there will be great difficulty in distinguishing between transitional 
and cyclic layering by studies on amplitudes alone. 

Our greatest concern, of course, attaches to the real log, for which the two- 
way transmitted pulse is given in figure 13~. The change of amplitude due to 
transmission loss is from I to 0.027, which obviously cannot be the effective 
value. A very significant positive tail, extending to some 16 ms, is added by the 
multiple reflections; the sum of the amplitude values over this systematically 
reinforcing tail is 0.874. Clearly, the effect of the very-short-delay multiples 
dominates the directly transmitted signal. 

And this, we remember, is with a two-way travel time of only 0.686 seconds. 
If we visualize a deep earth section having the same layering characteristics as 
are evident in our short piece of log, we can auto-convolve figure 13c sufficient 
times to represent the two-way travel path to any desired depth. Figure 14~ is 
a repeat of figure 13~; figure 14b represents the approximate form of the out- 
put after a transmission corresponding ’ to two-way travel time of 1.372 s, 
figure 14c that corresponding to 2.744 s, and figure z4d that corresponding to 
5.488 s. 

Of the several conclusions implicit in these diagrams, let us first stress the 
one concerned with the very first point-the direct arrival-which obviously 
becomes quite negligible in all of them, 
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At reflection times of tisual interest, it would make no significant difference 
if the direct “primary” reflection $ath did not exist; the useful seismic in- 
formation is carried by the very-short-delay multiple reflections. 

Now let us look at the form of the transmission responses of figure 14. 
Clearly one effect of the lengthening path is to broaden the output pulse; in a 

d ,,,,,,” ,,,,” ,111, ,,,,lllll,,llslllulllllllHllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll~, lll.lw . . . . . . . . . . . . . . . . . . . . . . . . ..llllllllilllllllllllllllfflllllllll~llll~ll 

0 50 IOOms 
Fig. 14. Illustration (a) repeats and extends the two-way transmission response of the 
real log in fig. 13. Illustrations (b), ( ) c and (d) are successive auto-convolutions of (a), 
representing the effect of longer path lengths in a statistically similar sequence of layers. 

coarse sense, the broadening is similar to that produced by absorption (although 
the mechanism is entirely different). And, just as the broadening produced by 
absorption is associated with a high-frequency cut, so the broadening produced 
by very-short-delay multiples implies a high-frequency cut. 

In fact, this conclusion was always present in our simple argument “More up, 
less down”. For one look at the reflection coefficient series of figure Iza tells 
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us that the total signal reflected back to the surface must have a low-frequency 
cut ; the high-frequency appearance-the cyclic nature of the sedimentation- 
virtually guarantees this. Then we can apply our simple argument to spectra 
just as convincingly as to amplitudes, and conclude that if the reflected signal 
has a low-frequency cut the transmitted signal must have a high-frequency 
cut. 

Of course, we should be able to do better than just “More up, less down”. In 
the Appendix is set out the derivation of an approximate relationship between 

TRANSITIONAL 
_ SYNTHETIC 

II trum _ Power spec 
of reflection 

coefficient 
series, 

multiplied by 
travel time 

a 

Logarithm of 
amplitude 

spectrum of 
transmitted 

signal 
d 

CYCLIC REAL 
SYNTHETIC LOG 

b D 
Freq. 

C J” 
Fig. 15. The anti-correlation between the spectra of the reflecting sequence and of the 
signal transmitted through it. Frequencies which are selectively reflected are poorly 

transmitted. More up, less down. 

the amplitude spectrum T(o) of the transmitted pulse and the power spectrum 
R(o) of the reflection coefficient series: 

This relationship is simply checked by comparing the power spectrum of 
a given length of the reflection coefficient series with the logarithm of the 
amplitude spectrum of the pulse transmitted through it. In figure 15 we do 
this for our two synthetic logs and for the real log. The reflection coefficient 
series for the illustrative transitional log has the expected low-frequency 
spectrum (figure 15a), and the signal transmitted through it has a correspond- 
ingly inverse spectrum (figure qd). The reflection coefficient series for the 
illustrative cyclic log has the expected low-frequency cut (figure 15b), while the 
signal transmitted through it has an inverse high-frequency cut (figure 15e). 
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Both examples fit well with the approximate relation above, Particularly 
satisfying is the real log itself; the power spectrum of the reflection coefficient 
series (figure I$) is accurately mirrored by the amplitude spectrum of the 
transmitted pulse (figure 15f). 

This excursion into the frequency domain gives us an alternative and in- 
teresting way of looking at the combined effects of transmission loss and very- 
short-delay multiple reflections. For if we imagine a reflection coefficient series 
whose spectral structure is such as to have no content at a particular frequency, 
then there is, in effect, no overall loss at that frequency. However, since the 
transmitted signal is minimum-phase (and since, therefore, the phase at that 
frequency depends on the phase at all other frequencies), that frequency can 
experience a delay even though there is n.o loss (d’Erceville and Kunetz, 1963 ; 
Sherwood and Trorey, 1965). 

Further, just as we were beginning to lose all hope of distinguishing between 
transitional and cyclic sequences by their effect on amplitudes, we see now that 
there may be additional help available in the frequency domain; specifically, the 
pulse transmitted through a transitional sequence has a low-frequency cut, 
while that transmitted through a cyclic sequence has a high-frequency cut. 

The formidable difficulty in deriving benefit from this, of course, is that of 
distinguishing between the effect of the high-frequency cut due to cyclic 
layering and that due to absorption. Both are progressive, both involve a loss 
of amplitude and a broadening of the transmitted signal. And, fortuitously, 
the degree of high-frequency cut associated. v&h cyclic layering may look very 
much like a constant dB/wavelength effect (at least over a restricted frequency 
band). Indeed, if we draw a smooth curve to approximate the spectrum of 
figure I5f over the first IOO Hz, we emerge with a high-frequency cut of about 
0.3 dB/wavelength. 

The magnitude of this figure immediately throws all our thoughts into 
disarray. For it raises the clear possibility that the loss of high frequencies due 
to passage through a cyclic sequence of layers may be greater than the loss of 
high frequencies due to absorption-the multiple-reflection effect may dominate 
the absorption effect. This, in turn, says that our records might look much the 
same if absorption did not exist. Further, in turn, we are led to question the 
magnitudes that have been quoted for absorption-is it possible that the 
experimenters have been ascribing to one mechanism an effect which actually 
owes much to another? 

We do not know. What seems most likely is that the two effects co-exist, 
both contributing a high-frequency cut and one sometimes dominating the 
other. The seismic pulse returned from any discrete reflector is therefore the 
interaction or convolution of the pulse shape contributed by the source, the 
pulse shape contributed by absorption, and the pulse shape contributed by the 
very-short-delay multiple reflections. 
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In figure 16 we see along the top line three possible breadths for the pulse 
representing the combined effects of absorption and the source. In the second 
line we see these reproduced at 0.027 of the amplitude, to illustrate what 
would be the loss in amplitude caused by two-way transmission through the 
log of figure 12 in the (unreal) absence of the very-short-delay multiple reflec- 
tions. In the third line we see the pulses of the first line convolved with the 
two-way transmission response of figure 14a, incorporating the very-short- 
delay multiple reflections. This convolution provides the means for recombin- 
ing, in effect, the amplitude contributions smeared out over time by the multiple 
reflection process. The amplitude actually obtained depends, clearly, on the 
relative breadths of the absorption pulse and the transmission pulse, and on 
the nature of the high-frequency and low-frequency pulse-shaping effects near 

pulse ’ 
shape 

with 
transmission 

losses 

plus 
multlple 

reflectlons 

Fig. 16. The effect of convolving three seismic pulse shapes with the pulse formed by 
transmission through the log of fig. 12, without and with the effect of the very-short-delay 

multiple reflections. 

the source. In general terms, however, we can see that pulses of likely shapes 
can be transmitted through a strongly stratified earth without amplitude 
losses of more than a few decibels per second-the observed values. 

SUMMARYANDCONCLUSIONS 

The loss of amplitude associated with the geometrical divergence of a 
wavefront is physically a clear and simple effect. It can be compensated with 
reasonable safety and reasonable accuracy. When this is done, little decay 
remains on records using low-frequency narrow-band sources. 

After correction for divergence, the amplitude of a reflection depends on its 
own reflection coefficient and on all the losses incurred above it. If the reflection 
is discrete the process of reflection itself is not frequency-selective (though, of 
course, “tuning” effects occur if the reflector is part of a complex). The losses 
occurring above the reflector are all frequency-selective; the main ones are 
absorption and the combined effects of transmission and multiple reflection at 
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interfaces. Before we can achieve the desired measurement of reflection coeffi- 
cient we must be able to quantify these losses; this must require the study of the 
amplitude loss and the spectral change in combination. The explosives manu- 
facturers can draw some consolation from the observation that these effects 
are best measured on records from a wide-band source. 

The expected effect of absorption can be presented fairly simply; however, 
the mechanism of absorption-the cause rather than the effect-is not very 
clear. Further, a case can be made that the magnitude of the effect is in ques- 
tion, since some of the early experimental work may not have taken sufficient 
account of very-short-delay multiple reflections. 

The effects of very-short-delay multiple reflections on “primary” reflection 
amplitudes and spectra are critically dependent on the nature of the strati- 
graphy. The distinction between transitional and cyclic sedimentation seems to 
be a basic and a helpful one, though much more work is required to formulate 
the connection between the mechanism of sedimentation and the consequent 
constraints on the reflection coefficient series. This could prove an important 
and rewarding subject for academic research; although the synthetic seismo- 
gram is no longer fashionable, its usefulness is certainly not exhausted. 

Transitional sequences, if they are to have realistic upper and lower bounds 
of acoustic impedance, can show only a small transmission loss; this loss is 
increased slightly by the effect of very-short-delay multiple reflections. The 
multiple-reflection effect for a transitional sequence has a low-frequency cut. 

Cyclic sequences, still within the same bounds, can have enormous transmis- 
sion losses; these losses are largely offset, at low frequencies, by the effect of 
very-short-delay multiple reflections. The transmission process for a cyclic 
sequence therefore appears to have a hi,gh-frequency cut. 

The log tested in the present work showed predominantly cyclic stratification 
in the range of layer thicknesses from I to IO m. 

There is an anti-correlation between the power spectrum R(w) of the reflec- 
tion coefficient series and the amplitude spectrum T(o) of the pulse transmitted 
through it; the simple relationship T(o) = emRlwjt seems to be a satisfactory 
approximation. 

All of this amounts to a hope-but not a promise-that the combined study 
of amplitude decay and spectral change on seismic records can lead to some 
definition of the statistics of the reflection coefficient series, and that this in 
turn will be interpretable in terms of the type of geological sedimentation. 
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APPENDIX 

The transmission resfionse of a set of thin layers 

Consider a section whose acoustic response for normally incident energy 
can be completely described by a set of ‘N reflection coefficients r(j) equally 
spaced in time. We shall try to show that a frequency-domain relationship 
exists between the series Y and its transmission response T. 

Strictly, we deal with the early part of T only. We assume that the effective 
length of the transmitted pulse is sufficiently short that the differential trans- 
mission loss of its components can be neglected. This is not unrealistic for 
sedimentary layers. However, we do need a more restrictive assumption. If we 
define 

a(Z) ‘= iii r(j) r(j + I), (1) 
,=I -it 

where 1 represents the delay of a multiple relative to the direct arrival, the 
expected value of r(j) r(j + I) is taken as a(Z)/N (that is, the series is assumed 
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stationary). Values of r(j) outside the section are to be read as zeros for the 
purpose of expressions such as (I). 

An impulse in layer N gives rise to a response in layer o which consists of a 
direct arrival and a set of multiply-reflected trains ks characterized by zk 
internal reflections. If the direct arrival has unit amplitude, the first multiple 
is 

IS(Z) = - iti r(j) Y(j +z), 1 >o (2) 
1-l 

I-1 

where only the differential transmission loss factor, of the form II (I - Y;), 
w-,+1 

has been neglected. It is convenient to consider this as equivalent to a 
more general function m(l) defined by 

m(Z) = -a(Z) 1 >o 
m(Z) = 0 1 < 0. (3) 

To evaluate the second multiple, we consider the expression 

c(J,, 12) = Ii Ql) r(j.1 + Il;+&j,) r(iz + 12) (4) 
!I -1 h=- 

which represents a contribution to 9 at a delay of I, + I,. The suffixes on j 
and I now indicate the order in which the multiple reflections occur. We can 
approximate equation (4) by 

~(4, la) cu z r(il) r(il + 4) 2 +,4,)/N 
h-1 52 -1 

cu g @WlN~ Lh4zW: 
11 -1 

cu Q m(h)- m(b). (5) 

For an estimate of the total arrival on ,s at a delay 1 we sum this, writing 
I-l,forl,: 

I-1 
& = z 4 m(Z - ZJ m(Z1). (6) 

11=1, 

This is a convolution and states that, if the multiples are normalized by the 
direct arrival, the second multiple is half the autoconvolution of the first; 
physically this makes sense if we think of m as the basic multiple-generating 
filter. The average amplitude of the first multiple within the section is half its 
final value; we would expect it to grow linearly. If we repeat this reasoning 
for the higher-order multiples it is found that a simple recursive relationship 
exists which can be written 

ks = I/k k-1s * m (7) 
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We can sum all these series in the frequency domain, defining 

M(w) = 5 m(Z) eetwzr 
Z-1 

(8) 

where 7 is the two-way transmission time within a layer. The transform of the 
pulse is now given by 

~v4 
T',(o) = I +M(o) + ---21 

M3 (4 + ----'-- . . = eMCw). (9) 

For the seismic problem we are interested in two-way transmission. Happily 
we do not have to go through the argument again, as the direction of propaga- 
tion affects only the way we number the reflection coefficients. The shape of 
the two-way transmitted pulse is obtained by squaring T’: 

T”(w) = e2Mtu). (10) 

This still describes a pulse whose first arrival is unity. If the original impulse 

is unity, we have to multiply T” by fi {I -r(j)“}. We can approximate this 
,=I 

by considering the relationship 

Limit 1-f = ewV, 
X---J i 1 

x 
(11) 

so that, for large N, we would expect e- a(o) to be a satisfactory estimate of the 
direct arrival. This gives our final pulse spectrum 

T(w) = e -a@) + ail!f(w)~ (14 

To derive useful information from this expression we could note that the 
amplitude spectrum of T is defined by the real part of the exponent, which 
is identical to the transform of - a. If we define the power spectrum R(w) of 
the reflection coefficient series as the transform of a normalized by the travel- 
time t = NT, we can write this as 

1 T(w) ( = eeR@Jt. (13) 

Equation (12) defines T as a minimum-phase function, so that it has at least 
one property in common with the exact response (Sherwood and Trorey 1965). 

As to the interpretation of the layer thickness T, any analysis that uses the 
concept of a reflection coefficient is necessarily discrete, but it is reassuring to 
note that the transform of a reflection coefficient series can .have an inter- 
pretation in terms of acoustic impedance 4, since 

t/T 
JS r(j) e++ 
I-1 
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converges to 

(Therefore the filtering of a q log is a legitimate procedure, but the filtering of 
log q is better.) 

These considerations lead us to stlppose that the power spectrum of a reflec- 
tion coefficient series is a meaningful concept, which does not depend on the 
choice of T. 
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