IFPEN uses cookies to measure website and content traffic. IFPEN also employs third-party cookie storage services to enable you to interact on social media and watch videos directly on the website. You can decline or accept all of these cookies. You can also change your choice at any time by clicking on " Cookie settings".

Focus on...

Fundamental Research
News 13 August 2024

Understanding the causes of corrosion through molecular modelling - Application to stainless steels in CO2 environments -

CCUS (Carbon Capture, Utilization and Storage) is a set of technologies that are crucial to the transition to a low-carbon economy. However, the infrastructure used to transport and store CO2, even in stainless steel, can corrode when exposed to this compound. To prevent these problems, a thorough understanding of the corrosion processes of the steels used is crucial. CO2, which is transported in a supercritical state, is not normally aggressive to metallic materials, but the presence of water and other contaminants can lead to corrosion. The passive layer protecting stainless steel plays a crucial role in this process, as its properties determine the alloy's reactivity to the environment. Doctoral work has shed light on this complex issue.