Focus on...

Fundamental Research
News 09 February 2022

The 2021 Yves Chauvin Thesis Prize awarded to Lina Jolivet: materials analysis to support processes

Lina Jolivet was the winner of the 2021 Yves Chauvin thesis prize for her work on the contribution of laser-induced breakdown spectroscopy (LIBS) to the characterization of industrial materials with a view to improving processes.

Issue 51 of Science@ifpen
News in brief

The dehydration of bio-based alcohols to form alkenes is a key reaction to obtain major chemical intermediates from biomass. It is efficiently catalyzed by zeolites presenting Brønsted acid sites and a crucial challenge is the control of its selectivity...
Individual page


Project manager, Research Engineer in Heterogeneous Catalysis
Malika Boualleg joined IFP New Energy after a thesis in synthesis of materials and heterogeneous catalysis (CP2M, ex-LCOMS 2006-2009), during which she developed new syntheses of mesostructured
Issue 50 of Science@ifpen
News in brief

The olefin oligomerization reaction provides access to a broad range of key compounds in the fuel, petrochemical and fine chemistry sectors...
Identification of reforming active phase catalytic descriptors
News in brief

​​​​​​​The vast majority of oil refineries are equipped with a catalytic reforming unit that fulfils three main functions: production of high-octane oil cuts for gasoline production (known as reformates), production of aromatic-rich cuts containing fewer than 10 carbon atoms, used in the chemicals industry, and generation of dihydrogen, primarily used in hydrotreatment and hydrocracking units...
Experimentation and modelling combined to study the catalytic conversion of biomass-derived sugars
News in brief

Driven by the global challenge of switching to a more sustainable economic and energy model, IFPEN has been studying for a number of years biosourced products with high added value and working to develop processes for biomass recovery, as an alternative to conventional petrochemistry.
Photocatalysis, a lighted pathway for CO2 conversion
News in brief

Although the climate crisis makes the reduction of CO2 emissions a matter of urgency, some industries will have difficulty in avoiding them, such as cement plants (where the core process is currently based on the calcination of CaCO3) or refineries, which are currently highly energy-intensive. Hence the huge potential interest in procedures that could capture the CO2 released directly from the plant (...) then recover it at a fraction of the energy cost...
Loss of selectivity in Fischer-Tropsch synthesis: a high-throughput study
News in brief

Faced with the current climate challenges, alternative fuels are attracting a growing interest for the mobility of the future. Of the various possible alternatives, hydrocarbons could be synthesised via a well-known process: the Fischer-Tropsch (FT) process, based on Syngas (CO and H2) produced, in particular, by biomass gasification. (...) However, the deactivation of FT catalysts is a major issue that directly impacts the costs of the process. (...) To identify these mechanisms, a multiple-stage methodology was implemented as part of a doctoral thesis...
Bifunctional catalysis deployed for the production of biofuels
News in brief

The production of biofuels, renewable diesel or sustainable aviation fuel can be achieved through lipid feedstocks conversion, such as vegetable oils, used cooking oils or animal fats. Through a hydrotreatment stage, we obtain long-chain normal paraffinsa, which must then be isomerised or cracked in order to adjust the properties of the effluent, resulting in the specifications required according to the targeted fuel type (particularly cold flow properties and/or final distillation temperature)...
New acid zeolites obtained from silicogermanates
News in brief

Zeolites are microporous crystalline aluminosilicates that exist in the natural state and can also be synthesised for a wide range of applications, from the biomedical industry to the production of renewable energy. (...) This work was carried out entirely at IFPEN as part of a doctoral thesis and has resulted in a new stable zeolite...
Molecular modelling: a key tool for current and future heterogeneous catalysis
News in brief

Chemical theory at quantum level (density functional theory or DFT) is an essential tool in rationalising the reaction mechanisms involved in the preparation of catalysts, as well as in their use, thanks to the optimisation of their activity [1,2]. IFPEN has carried out a number of projects aiming to shed light on these catalysts, which are of particular interest to industrial processes...